\[\displaylines{J(\mathbf{x}, \mathbf{y}; \mathbf{W}) = (\mathbf{x}^T\mathbf{W}\mathbf{y})/(\mathbf{x}^T\mathbf{W}\mathbf{1}+\mathbf{1}^T\mathbf{W}\mathbf{y}-\mathbf{x}^T\mathbf{W}\mathbf{y})\\ \\ =(\mathbf{x}^T\mathbf{W}\mathbf{y})/(\mathbf{x}^T\mathbf{W}\mathbf{1}+\mathbf{1}^T\mathbf{W}\mathbf{y}-\mathbf{x}^T\mathbf{W}\mathbf{y}-1+1)\\ \\ =(\mathbf{x}^T\mathbf{W}\mathbf{y})/(1 + \mathbf{x}^T\mathbf{W}\mathbf{1}+\mathbf{1}^T\mathbf{W}\mathbf{y}-\mathbf{x}^T\mathbf{W}\mathbf{y}-\mathbf{1}^T\mathbf{W}\mathbf{1})\\ \\ =(\mathbf{x}^T\mathbf{W}\mathbf{y})/(1 + (\mathbf{1}-\mathbf{x})^T\mathbf{W}(\mathbf{y}-\mathbf{1}))\\ \\ =(\mathbf{x}^T\mathbf{W}\mathbf{y})/(1 - (\mathbf{x}-\mathbf{1})^T\mathbf{W}(\mathbf{y}-\mathbf{1}))\\ }\ ,\]
where \(\mathbf{1}\) is a vector of ones and the fact that \(\mathbf{1}^T\mathbf{W}\mathbf{1}=1\) is used in the third step. Now, notice that \(J(\mathbf{x}, \mathbf{y}; \mathbf{W})\) is of the form of the infinite geometric series:\[\displaylines{\frac{a}{1-r}=\sum\limits_{j=0}^{\infty}{ar^j}}\ .\]
Namely, since they are both scalars, \(a=\mathbf{x}^T\mathbf{W}\mathbf{y}\) and \(r = (\mathbf{x}-\mathbf{1})^T\mathbf{W}(\mathbf{y}-\mathbf{1})\). Further, given the earlier definitions, note that \(0 \leq r \leq 1\).\[\displaylines{J(\mathbf{x}, \mathbf{y}; \mathbf{W}) = \mathbf{x}^T\mathbf{W}\mathbf{y}\sum\limits_{j=0}^{\infty}{[(\mathbf{x}-\mathbf{1})^T\mathbf{W}(\mathbf{y}-\mathbf{1})]^j} = \mathbf{x}^T\mathbf{W}\mathbf{y}\sum\limits_{j=0}^{\infty}{[\mathbf{\tilde{x}}^T\mathbf{\tilde{y}}]^j}\\ \\ = \mathbf{x}^T\mathbf{W}\mathbf{y}\sum\limits_{j=0}^{\infty}{[\sum\limits_{n_1 + \ldots + n_k = j}^{}{(\mathbf{\tilde{x}}^{n_1}_1 \cdots \mathbf{\tilde{x}}^{n_k}_k)(\mathbf{\tilde{y}}^{n_1}_1 \cdots \mathbf{\tilde{y}}^{n_k}_k)}]} \\ = (\sqrt{\mathbf{w}_1}\mathbf{x}_1\sqrt{\mathbf{w}_1}\mathbf{y}_1 + \ldots + \sqrt{\mathbf{w}_k}\mathbf{x}_k\sqrt{\mathbf{w}_k}\mathbf{y}_k) \sum\limits_{j=0}^{\infty}{[\sum\limits_{n_1 + \ldots + n_k = j}^{}{(\mathbf{\tilde{x}}^{n_1}_1 \cdots \mathbf{\tilde{x}}^{n_k}_k)(\mathbf{\tilde{y}}^{n_1}_1 \cdots \mathbf{\tilde{y}}^{n_k}_k)}]}\\ \\ = \sum\limits_{j=0}^{\infty}{[\sum\limits_{n_1 + \ldots + n_k = j}^{}{\sqrt{\mathbf{w}_1}\mathbf{x}_1(\mathbf{\tilde{x}}^{n_1}_1 \cdots \mathbf{\tilde{x}}^{n_k}_k)(\mathbf{\tilde{y}}^{n_1}_1 \cdots \mathbf{\tilde{y}}^{n_k}_k) \sqrt{\mathbf{w}_1}\mathbf{y}_1}]} \\ + \sum\limits_{j=0}^{\infty}{[\sum\limits_{n_1 + \ldots + n_k = j}^{}{\sqrt{\mathbf{w}_2}\mathbf{x}_2(\mathbf{\tilde{x}}^{n_1}_1 \cdots \mathbf{\tilde{x}}^{n_k}_k)(\mathbf{\tilde{y}}^{n_1}_1 \cdots \mathbf{\tilde{y}}^{n_k}_k) \sqrt{\mathbf{w}_2}\mathbf{y}_2}]} \\\\ + \ldots \\\\ + \sum\limits_{j=0}^{\infty}{[\sum\limits_{n_1 + \ldots + n_k = j}^{}{\sqrt{\mathbf{w}_k}\mathbf{x}_k(\mathbf{\tilde{x}}^{n_1}_1 \cdots \mathbf{\tilde{x}}^{n_k}_k)(\mathbf{\tilde{y}}^{n_1}_1 \cdots \mathbf{\tilde{y}}^{n_k}_k) \sqrt{\mathbf{w}_k}\mathbf{y}_k}]}\\ }\ ,\]
where \(\mathbf{w}_i\) is the i-th item weight and the multinomial theorem is employed in the second line.\[\displaylines{\varphi(\mathbf{x})=(c_{1j}\sqrt{\mathbf{w}_1}\mathbf{x}_1[\sqrt{\mathbf{w}_1}(\mathbf{x}_1 - 1)]^{n_1} \cdots [\sqrt{\mathbf{w}_k}(\mathbf{x}_k - 1)]^{n_k},\\ \ldots, c_{2j}\sqrt{\mathbf{w}_2}\mathbf{x}_2[\sqrt{\mathbf{w}_1}(\mathbf{x}_1 - 1)]^{n_1} \cdots [\sqrt{\mathbf{w}_k}(\mathbf{x}_k - 1)]^{n_k},\\ \ldots, c_{kj}\sqrt{\mathbf{w}_k}\mathbf{x}_k[\sqrt{\mathbf{w}_1}(\mathbf{x}_1 - 1)]^{n_1} \cdots [\sqrt{\mathbf{w}_k}(\mathbf{x}_k - 1)]^{n_k})^T}\ ,\]
where the \(c_{ij}\) terms are the appropriate constants determined as above by the multinomial theorem. In the above, the infinite product of the j-th power of the term involving the complement intersection is repeated k times: once for each element of the original vector. In this way, it can be seen that the implicit mapping corresponds to an infinite-dimensional transformation.\[\displaylines{\sum\limits_{j=0}^{\infty}{ar^j}=a(r^0+r^1+r^2+\ldots)}\ .\]
In this formula, a corresponds to the weighted proportion of elements in the intersection and r corresponds to the weighted proportion of elements in the intersection of the set complements. In normal situations, the contributions of the higher powers of r become vanishingly small and the sum rapidly converges to a finite number.